Skip to main content

LiteLLM - Caching

Caching completion() and embedding() calls when switched on

liteLLM implements exact match caching and supports the following Caching:

  • In-Memory Caching [Default]
  • Redis Caching Local
  • Redis Caching Hosted
  • GPTCache

Quick Start Usage - Completion

Caching - cache Keys in the cache are model, the following example will lead to a cache hit

import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()

# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])

# response1 == response2, response 1 is cached

Using Redis Cache with LiteLLM

Pre-requisites

Install redis

pip install redis

For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/

Usage

import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password>)

# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}])

# response1 == response2, response 1 is cached

Custom Cache Keys:

Define function to return cache key

# this function takes in *args, **kwargs and returns the key you want to use for caching
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key

Set your function as litellm.cache.get_cache_key

from litellm.caching import Cache

cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])

cache.get_cache_key = custom_get_cache_key # set get_cache_key function for your cache

litellm.cache = cache # set litellm.cache to your cache

Controlling Caching for each litellm.completion call

completion() lets you pass in caching (bool) [default False] to control whether to returned cached responses or not

Using the caching flag Ensure you have initialized litellm.cache to your cache object

from litellm import completion

response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.1, caching=True)

response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=0.1, caching=False)

Detecting Cached Responses

For resposes that were returned as cache hit, the response includes a param cache = True

Example response with cache hit

{
'cache': True,
'id': 'chatcmpl-7wggdzd6OXhgE2YhcLJHJNZsEWzZ2',
'created': 1694221467,
'model': 'gpt-3.5-turbo-0613',
'choices': [
{
'index': 0, 'message': {'role': 'assistant', 'content': 'I\'m sorry, but I couldn\'t find any information about "litellm" or how many stars it has. It is possible that you may be referring to a specific product, service, or platform that I am not familiar with. Can you please provide more context or clarify your question?'
}, 'finish_reason': 'stop'}
],
'usage': {'prompt_tokens': 17, 'completion_tokens': 59, 'total_tokens': 76},
}

Caching with Streaming

LiteLLM can cache your streamed responses for you

Usage

import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()

# Make completion calls
response1 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}], stream=True)
for chunk in response1:
print(chunk)
response2 = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Tell me a joke."}], stream=True)
for chunk in response2:
print(chunk)

Usage - Embedding()

  1. Caching - cache Keys in the cache are model, the following example will lead to a cache hit
import time
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()

start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5])
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")

start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5])
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")